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Abstract
Zonal flow (ZF) momentum balance in a three-dimensional, coupled drift-ion acoustic wave
system is examined. In a three-dimensional system, conservation of potential vorticity (PV) is
broken by fluctuating parallel flow compressibility. The coupling between PV fluctuation and
fluctuating parallel flow compression defines a source/sink for fluctuating potential enstrophy
density, and thus influences the wave momentum density and modifies the zonal momentum
theorem. We show that perpendicular ZFs can be excited by stationary turbulence via
compressional coupling, even in the absence of a driving force and potential enstrophy flux.
The coupling drive involves both perpendicular and parallel dynamics, and does not require
symmetry breaking in the turbulence spectrum. A new mechanism for ZF generation is thus
revealed.

1. Introduction

It is broadly recognized that zonal flow (ZF) plays a crucial role
in regulating turbulence and transport in magnetic confinement
plasmas [1, 2]. Over the past two decades, ZF dynamics
have been intensively studied, and considerable progress has
been achieved. Gyrokinetic simulation studies reported the
important role of ZFs in ion temperature gradient (ITG) [3, 4]
and collisionless trapped electron mode [5–7] turbulence.
Recent experimental results on many devices also identified
the crucial role of ZFs in the L–H transition [8–11]. There
are also many theoretical works on turbulent flow generation
by turbulent Reynolds stress [12, 13]. The flux of potential
vorticity (PV) is often used instead of the closely related
Reynolds force (divergence of Reynolds stress) to describe
ZF excitation. The assumption of symmetry along the zonal
coordinate was used to derive the Taylor identity [14], i.e.
〈vr q̃〉 = ∂〈vrvy〉/∂r , where q̃ = ∇2

⊥φ−φ is the PV fluctuation
and v is the normalized fluctuating E × B velocity. This
expression explicitly shows the link between PV transport and
Reynolds force. Recently, theoretical studies of ZF dynamics
have begun to focus on ZF momentum instead of energy
transfer. The focus on momentum leads to non-acceleration

theorems [15] for quasi-geostrophic and drift wave turbulence
in real space [16], and for gyrokinetic drift wave turbulence
in phase space [17]. The theorems provide an approach to
understand ZF dynamics in terms of flux drive and turbulence
spreading rather than spectral transfer.

Most existing theoretical studies of ZF focused only on
perpendicular dynamics, but neglected the dynamical coupling
along the magnetic field line. Usually, k‖Ln ∼ O(ε) justifies
the neglect of the dynamical parallel coupling. Here, k‖ is the
wavenumber along the magnetic field line, Ln is the density
gradient scale length and ε is the standard ordering parameters
for low frequent drift wave turbulence. Two popular drift
wave models, i.e. the Hasegawa–Mima (H–M) model [18]
and the Hasegawa–Wakatani (H–W) model [19] are often
used to investigate drift wave–ZF system, in which PV is
conserved up to diffusion. PV obeys a two-dimensional (2D)
equation in these two models, although the H–W system
itself is explicitly three-dimensional (3D). The constraint of
PV conservation on ZF evolution in H–W system relates
the sum of the negative of the pseudomomentum and the
ZF momentum to the particle flux, the potential enstrophy
dissipation, the potential enstrophy density flux and the drag of
ZF. In this case, stationary turbulence cannot excite a ZF in the
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absence of particle flux, dissipation and transport of potential
enstrophy [16].

However, the drift waves will couple to the ion acoustic
waves if the parallel wave number k‖ is big enough. In
such a case, the coupling between perpendicular and parallel
dynamics could result in a qualitative difference from the 2D
system. In a 3D coupled drift-ion acoustic wave system, PV
is no longer conserved due to the compression of fluctuation
parallel velocity. One could then ask how the zonal momentum
theorem obtained in [16] will be modified, once parallel
dynamics is included? Therefore, it is interesting and
important to study the effects of the coupling between drift
waves and ion acoustic waves on ZF dynamics.

In this work, we study ZF dynamics in a 3D coupled
drift-ion acoustic wave system. In the evolution equation for
fluctuating potential enstrophy density, the coupling between
drift waves and ion acoustic waves acts as a source/sink. As a
consequence, the coupling affects the wave momentum density
(turbulence pseudomomentum). By combining the evolution
equation of the wave momentum density and the mesoscale ZF
equation, we obtain a zonal momentum theorem—an extension
of the Charney–Drazin theorem—for this 3D system. The
difference from the 2D equation is that stationary turbulence
can excite ZFs via the coupling of drift waves and ion
acoustic waves even in the absence of a driving force and
a potential enstrophy flux. This means that the drift-ion
acoustic coupling can effectively convert parallel compression
into perpendicular flow. This coupling drive does not require
symmetry breaking in the turbulence spectrum. Thus, we
find a new mechanism for ZF generation, which is different
from turbulent stress generation. We will discuss the roles of
different types of symmetry breaking in flow generation and
the relationship between perpendicular and parallel dynamics
in the conclusion.

The rest of this paper is organized as follows. In section 2,
we present the derivation of the zonal momentum theorem for
the 3D coupled drift-ion acoustic wave system, and evaluate the
coupling driving source of the ZF in shearless slab geometry
and sheared slab geometry, respectively. In section 3, we
summarize our work and give some discussions. In the
appendix, we present a derivation of the wave momentum
density for shearless slab geometry.

2. ZF momentum in 3D coupled drift-ion acoustic
wave system

In this work, we adopt the nonlinear equations which describe
coupled drift waves and ion acoustic waves in 3D [20],

∂

∂t

(
∇2

⊥φ − φ
)

+ ẑ × ∇φ · ∇∇2
⊥φ +

(
∂

∂r
ln n0

)
∂

∂y
φ

= f̃ + µ∇2 (
∇2

⊥φ − φ
)

+ ∇‖u‖, (1)
(

∂

∂t
+ ẑ × ∇φ · ∇

)
u‖ = −∇‖φ. (2)

Here we have used the standard normalization for electric
potential fluctuation φ ≡ eφ̃/Te, parallel velocity fluctuation
u‖ ≡ ũ‖/cs, spatial scales ∇⊥ ≡ ρs∇⊥ and ∇‖ ≡ ρs∇‖, time
scale t ≡ ωcit with ωci = eB/(mic) is the ion gyrofrequency,

cs is the ion acoustic velocity and ρs is the ion Larmour radius
at the electron temperature. A standard ordering for low-
frequency drift wave turbulence is given by

k⊥ρs ∼ 1, (3)

where k⊥ is the perpendicular wave number, and

ω

ωci
∼ φ ∼ ρs

Ln

∼ ε. (4)

But, a different parallel ordering k2
‖L

2
n ∼ O(ε) rather than

k‖Ln ∼ O(ε) is used in this work to highlight the role of
parallel dynamics. Equations (1) and (2) assume cold ion,
i.e. Te * Ti. The first two terms on the rhs of equation (1)
correspond to forcing and dissipation, respectively. The last
term on the rhs of equation (1) comes from the compression
of fluctuating ion parallel flow. This formally smaller
term breaks the conservation of PV, which will lead to a
qualitatively different result. In the parallel velocity equation,
i.e. equation (2), we assumed isothermal electrons. ∇Pi is
absent due to the cold ion approximation.

We use the notation q̃ = ∇2
⊥φ − φ for fluctuating PV.

Multiplying equation (1) by q̃ and then taking a zonal average,
we obtain the fluctuating potential enstrophy balance equation

∂

∂t

〈
q̃2

2

〉
+

∂

∂r

〈
vr

q̃2

2

〉

=
(

∂

∂r
ln n0

)
〈vr q̃〉 + 〈f̃ q̃〉 − µ〈(∇q̃)2〉 +

〈
q̃∇‖u‖

〉
. (5)

Here, vr is the fluctuating radial E × B velocity,
and the dissipation of zonal averaged potential enstrophy
µ∂2〈q̃2/2〉/∂r2 is negleted. This is because the scale of
zonal averaged quantity is mesocale which is lager than
the corresponding drift wave scale. As discussed in [16],
the potential enstrophy is produced by forcing and by PV
flux acting on density gradient, damped by viscosity and
transported by advection. However, we note that, there is an
additional term, the coupling between PV and compressibility
of parallel flow fluctuation, which can act as a source or sink
for potential enstrophy. This coupling changes the potential
enstrophy balance equation obtained in 2D system. It is
therefore natural to examine its effect on the Charney–Drazin
theorem.

The zonally averaged flow evolves according to

∂

∂t

〈
vy

〉
= −

〈
vr∇2

⊥φ
〉
− ν

〈
vy

〉
. (6)

Here, the Taylor identity [14] ∂〈vrvy〉/∂r = 〈vr∇2
⊥φ〉 is used.

Combining equations (5) and (6), a zonal momentum
theorem for 3D coupled drift-ion acoustic wave system is easily
obtained

∂

∂t

[
〈
vy

〉
+

(
∂ ln n0

∂r

)−1 〈
q̃2

2

〉]

= −ν
〈
vy

〉
+

(
∂ ln n0

∂r

)−1

×
[
− ∂

∂r

〈
vr

q̃2

2

〉
+ 〈f̃ q̃〉 − µ〈(∇q̃)2〉 +

〈
q̃∇‖u‖

〉]
. (7)

Here, the PV flux in equation (5) and vorticity flux in
equation (6) cancel each other, since 〈vrφ〉 = 0. Similar to 2D
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drift wave system, the second term on the lhs of equation (7)
is also recognized as the negative of wave momentum density
(negative of the turbulence pseudomomentum), i.e.

(
∂ ln n0

∂r

)−1 〈
q̃2

2

〉
= − 1

mics

∑

k

ky

Ek

ωk

. (8)

But the difference is both the wave energy density Ek and the
linear frequencyωk include the parallel ion acoustic correction.
We will show this in the appendix.

Equation (7) generalizes the classical Charney–Drazin
non-acceleration theorem [15, 16] from 2D system to 3D
coupled drift-ion acoustic wave system. It shows explicit link
of ZF evolution to the wave momentum density evolution,
the forcing drive the transport and dissipation of potential
enstrophy, the drag and the coupling of drift waves to ion
acoustic waves. All the elements in the 2D momentum theorem
are included in this generalized momentum theorem, but the
last term on the rhs of equation (7), i.e. the coupling term, is
a new one. This new term provides a driving source for ZF
momentum. For stationary states, the ZF can be written as

〈
vy

〉
= 1

ν

(
∂ ln n0

∂r

)−1

×
[
− ∂

∂r

〈
vr

q̃2

2

〉
+ 〈f̃ q̃〉 − µ〈(∇q̃)2〉 +

〈
q̃∇‖u‖

〉]
. (9)

This expression shows that stationary turbulence can excite
ZF via the coupling drive, even in the absence of force driving,
potential enstrophy flux and dissipation. The coupling term
〈q̃∇‖u‖〉 is negative definite, i.e. its product with (∂ ln n0/∂r)−1

is positive definite for peaked density profile. This will
be shown in the following two subsections. Therefore, the
saturated ZF level increases in comparison with the 2D system
because of the coupling drive. We show that the coupling
between drift waves and ion acoustic waves plays an important
role of converting parallel compression into perpendicular
flow. This is a new mechanism for ZF generation. Now, we
estimate the coupling drive in two kinds of geometries.

2.1. Shearless slab geometry

First, we consider the simplest case, i.e. shearless slab
geometry. By linearizing equations (1) and (2), we obtain

iωk

(
1 + k2

⊥ρ2
s

)
φk − iω∗nφk − ik‖csuk = 0, (10)

− iωkuk + ik‖csφk = 0, (11)

where, ω∗n = kyρscs/Ln. The dispersion relation is as follows:
[
(
1 + k2

⊥ρ2
s

)
− ω∗n

ωk

−
k2
‖c

2
s

ω2
k

]

φk = 0. (12)

In this equation, the first two terms are dominant, from which
we can obtain the familiar electron drift wave frequency
ω∗ = ω∗n/(1 + k2

⊥ρ2
s ). The last term is the correction from ion

acoustic waves. So we write ωk = ω∗ +δωk , with |δωk| , ω∗,
and to first order in small quantities find:

ω∗nδωk

ω2
∗

−
k2
‖c

2
s

ω2
∗

= 0. (13)

The ordering here is consistent with what we mentioned before,
i.e. δωk/ω∗ ∼ k2

‖L
2
n ∼ ε. Then, we obtain the drift wave

frequency with the ion acoustic correction

ωk = ω∗n(
1 + k2

⊥ρ2
s

) +
k2
‖c

2
s

ω∗n

. (14)

Now, we calculate the coupling between drift waves and
ion acoustic waves in the zonal momentum theorem, i.e. the
last term in equation (7):

〈
q̃∇‖u‖

〉
= −-

∑

k

(
1 + k2

⊥ρ2
s

) i
ωk + i |.ωk|

k2
‖ρscs |φk|2

= −
∑

k

|.ωk|
ω2

k

(
1 + k2

⊥ρ2
s

)
k2
‖ρscs |φk|2 . (15)

Here, we consider finite amplitude stationary turbulence and
thus, a finite correlation time. |.ωk| is decorrelation rate due
to E ×B nonlinearity of the parallel flow in equation (2). The
wave absorption from ω − kyVE(r) resonance is neglected.
It is obvious that the coupling does not vanish and no
symmetry breaking in the turbulence spectrum is required to
render 〈q̃∇‖u‖〉 /= 0. Therefore, the coupling can convert
parallel compressibility into ZF. This is a new mechanism for
ZF generation, which is qualitatively different from the 2D
Reynolds forcing drive.

To semi-quantitatively illustrate the important role of
parallel dynamics, we compare the coupling term, 〈q̃∇‖u‖〉,
with the PV flux term, ( ∂

∂r
ln n0)〈vr q̃〉. The former one is

given on the rhs of equation (15). The latter one is the usual
Reynolds forcing drive for ZF in 2D system, which can be
estimated as

(
∂

∂r
ln n0

)
〈vr q̃〉 ∼ ρs

Ln

q2c2
s

γkωci
k2
yρ

2
s |φk|2

VZF

cs
, (16)

by the modulation calculation [1]. Here, q is the radial
wave number of ZF, which is mesoscale, can be typically
estimated as q−1 ∼

√
ρsLn, γk is the linear growth of the

ambient turbulence, which can be estimated as |.ωk|, i.e.
γk/ωci ∼ |.ωk|/ωci ∼ (qρs)

1/2(ρs/Ln), the ZF velocity can
be estimated as VZF/cs ∼ qρ2

s /Ln. Then, the ratio between
coupling term and PV flux term is

〈
q̃∇‖u‖

〉
(

∂
∂r

ln n0
)
〈vr q̃〉

∼ k2
‖L

2
nε

−1, (17)

where k⊥ρs ∼ 1 was used. Now, we can see that k2
‖L

2
n ∼ ε

makes the coupling term as the same order as the PV flux term.
It means that these two terms are comparable for the ordering
adopted in this work. Therefore, the parallel coupling term is
qualitatively different from, but quantitatively comparable to,
the 2D Reynolds forcing drive for ZF.

2.2. Sheared slab geometry

In this subsection, we consider sheared slab geometry. We use
k‖ = kyx/Ls , with x = r−r0, where r0 is the radial location of
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the resonant surface and Ls is the magnetic shear scale length.
Linearizing equations (1) and (2) again, we have

iωk

(
1 + k2

yρ
2
s − ρ2

s
∂2

∂x2

)
φk − iω∗nφk − ikycs

x

Ls

uk = 0,

(18)

−iωkuk + ikycs
x

Ls

φk = 0. (19)

Substitution of equation (19) into equation (18) yields the linear
eigenmode equation

[
∂2

∂x2
+

1
ρ2

s

(
ω∗n

ωk

− 1 − k2
yρ

2
s

)
+

k2
yω

2
ci

L2
sω

2
k

x2

]

φk = 0. (20)

This is a Weber equation, and the solution is Hermite function

φk(x) = φk exp
[
−σx2

2

]
Hl

[√
σx)

]
, (21)

where, σ = ±ikyωci/(Lsωk). If we take l = 0, H0 = 1, the
solution becomes

φk(x) = φk exp
[
∓i

kyωci

2Lsωk

x2
]

, (22)

so that

kx = −i
∂

∂x
= ∓kyωci

Lsωk

x, (23)

and thus

ωk = ∓kyωci

Lskx

x. (24)

Therefore, the group velocity in the x direction is

vgx = ∂ωk

∂kx

= ±kyωci

Lsk2
x

x. (25)

Outgoing wave propagation requires vgx/x > 0, i.e. we should
take the upper and lower solutions for ky > 0 and ky < 0,
respectively. Finally, the solution of the eigenmode equation is

φk(x) = φk exp
[
−i

|ky |cs

2Lsωkρs
x2

]
. (26)

Now, the coupling between drift waves and ion acoustic
waves is estimated using the quasilinear approximation in the
following:

〈
q̃∇‖u‖

〉
= −-

∑

k

[

1 + k2
yρ

2
s +

k2
yc

2
s

L2
sω

2
k

x2 − i
|ky |ρscs

Lsωk

]

× i
(ωk + i |.ωk|)

k2
yρscs

x2

L2
s

|φk|2 = −
∑

k

k2
yρscs

.2

L2
s

×
{[

(
1 + k2

yρ
2
s

)
+

k2
yc

2
s

ω2
k

.2

L2
s

]
|.ωk|
ω2

k

+
ρs

Ls

|ky |cs

ω2
k

}

|φk|2.

(27)
Here, . is the radial width of the potential fluctuation spectrum
|φk|2 = F(x/.), i.e. .2 =

∫
dxx2F/

∫
dxF , with x = r−r0.

By using k‖Ln ∼ ky.Ln/Ls ∼ ε1/2, we can obtain ./Ls ∼
ε3/2. Similar to the shearless slab case, non-zero coupling does
not require any symmetry breaking in the turbulence spectrum.
It can also convert parallel compression into ZF. The magnitude
of ZF drive due to this coupling is dependent on the spectral
width and hence on the magnetic shear scale length.

3. Conclusion and discussion

In this work, we investigated the zonal momentum theorem in
a 3D coupled drift-ion acoustic wave system. This system
is different from the familiar Hasegawa–Mima system in
2D, for which PV is conserved up to diffusion. In the 3D
system, the compression of fluctuating parallel flow breaks
the conservation of PV. Consequently, the coupling between
drift waves and ion acoustic waves acts as a potential enstrophy
density source or sink, and thus influences the wave momentum
density (the turbulence pseudomomentum). We derive a
zonal momentum theorem by combining the equation of wave
momentum density and the ZF equation for a 3D system. We
take into account the parallel dynamics which was neglected
in most of the previous works on this subject.

We find that, in the zonal momentum theorem for the 3D
system, the coupling between drift waves and ion acoustic
waves which is absent in 2D acts as a driving source. Thus, it is
possible for stationary turbulence to excite ZF by this coupling
even in the absence of force driving and potential enstrophy
flux. Therefore, in this sense, the non-acceleration theorem for
ZF momentum obtained from the 2D equation [15] is modified
in this work. Via the acoustic coupling, drift waves can convert
parallel compression into perpendicular flow.

We evaluate the driving term using the quasilinear
approximation for the simplest cases of shearless slab
geometry and for sheared slab geometry, respectively. For both
cases, the non-zero coupled driving does not require special
symmetry breaking in the turbulence spectrum. This is in
contrast to the poloidal Reynolds stress or toroidal Reynolds
stress driven flow, and follows from the fact that conservation of
PV is explicitly broken in the 3D nonlinear coupled equations.
If we think of the symmetry breaking needed in poloidal
(toroidal) Reynolds stress drive as a case of ‘spontaneous
symmetry breaking’, the breaking of conservation of PV might
then be considered as ‘dynamical symmetry breaking’. In this
sense, we uncover a new mechanism for ZF generation which
is different from purely 2D turbulent stress drive.

One may naturally relate this work to parallel flows and
intrinsic rotation, since the k‖ symmetry breaking induced by
E × B shear can accelerate a net parallel flow, as presented
in [21–23]. In our work, we find that ZF can be generated by
coupling of drift waves and ion acoustic waves, even with a
symmetric turbulence spectrum. Then ZF shear will lead to
intrinsic rotation, according to [21–23]. It forms a distinct,
dynamical pathway which is shown in figure 1. We also note
that the coupling drive of ZF is independent of the sign of the
fluctuation frequency, which can be seen from equations (15)
and (27). Therefore, a similar conclusion can also be obtained
by applying this theory to ion temperature gradient (ITG)–
ion acoustic coupling system. This suggests that the intrinsic
rotation might be universal, if dynamical parallel coupling is
included.

One may also interested in the effects of parallel flow
shear on ZF dynamics. Self-consistent generation of sheared
perpendicular flow in parallel shear flow driven turbulence
has been studied in [24]. Here, we discuss the effects of
weak parallel flow shear, i.e. kyρs(∂U0/∂r) ∼ k‖cs on zonal
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Figure 1. The pathway from parallel compressional coupling to
parallel flow.

momentum balance. One consequence is the second term on
the lhs of equation (7) can be reduced to a negative value of
wave momentum density only to the lowest order. Unlike the
limit discussed in the Appendix, the corrections from weak
parallel shear to the wave momentum energy and the wave
frequency do not cancel each other exactly. By a simple
manipulation, the normalized wave momentum density can
be written as

1
mics

∑

k

kyNk = −
(

∂ ln n0

∂r

)−1 〈q̃2〉
2

(
1 − O(k2

‖L
2
n)

)
. (28)

We can see the additional term in wave momentum density
introduced by weak parallel flow shear is smaller by one order.
The other consequence appears in the coupling drive q̃∇‖u‖.
For the case of sheared slab geometry, in equation (27), the
weak parallel flow shear will introduce an additional term

∑

k

k2
yρscs

ρs

cs

∂U0

∂r

{ [
(
1 + k2

yρ
2
s

) x

Ls

+
k2
yc

2
s

ω2
k

x3

L3
s

]

×
|.ωk|
ω2

k

+
x

Ls

ρs

Ls

|ky |cs

ω2
k

}

|φk|2.

We note that this term vanishes for the case of a symmetric
turbulence spectrum. This is in contrast to the original coupling
drive term which does not require asymmetric turbulence.
Proceeding as in the study of intrinsic torque caused by
turbulence intensity gradient, we take I (x) = |φk|2(x) =
I (0) + x(∂I/∂r) [25], so the additional term becomes

Ls

LI

ρs

cs

∂U0

∂r

∑

k

k2
yρscs

.2

L2
s

{ [
(
1 + k2

yρ
2
s

)
+

k2
yc

2
s

ω2
k

.2

L2
s

]

×
|.ωk|
ω2

k

+
ρs

Ls

|ky |cs

ω2
k

}

|φk|2.

Here, L−1
I = ∂ ln I/∂r is the intensity gradient length scale.

Comparing with the original term on the rhs of equation (27),
this additional term is order of (Ls/LI )(ρs∂U0)/(cs∂r).
Using weak parallel flow shear assumption kyρs(∂U0/∂r) ∼
k‖cs mentioned above, we obtain (Ls/LI )(ρs∂U0)/(cs∂r) ∼

./LI ∼ ε3/2(Ls/LI ). For the case with normal magnetic
shear, Ls and LI are roughly the major radius R0 and density
gradient scale length Ln, respectively. Ln is roughly as the
same order as the minor radius except for a steep barrier regime,
i.e. Ls/LI ! ε−1/2, the order is thus reduced to ./LI ! ε.
It means that the additional term is smaller than the original
term. Hence, the changes due to weak parallel flow shear do
not substantively affect the zonal momentum balance.

In conclusion, the Charney–Drazin non-acceleration
theorem has been generalized from 2D systems to 3D
coupled drift-ion acoustic wave systems. The parallel
compressional coupling which breaks PV conservation can
excite perpendicular ZF, even for stationary symmetric
turbulence.
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Appendix A. Derivation of wave momentum density
in shearless slab geometry

The wave energy density in the 3D coupled drift-ion acoustic
wave system can be written as

Ek = Te

2

[(
1 + k2

⊥ρ2
s

)
|φk|2 +

∣∣u2
k

∣∣] . (A.1)

Here, the last term comes from the ion acoustic waves. By
linearization of equation (2), we obtain

uk = k‖cs

ωk

φk. (A.2)

Thus, the wave energy density becomes

Ek = Te

2

(

1 + k2
⊥ρ2

s +
k2
‖c

2
s

ω2
k

)
|φk|2 . (A.3)

The wave action density is defined as

Nk = Ek

ωk

. (A.4)

Here, ωk is the wave frequency for shearless slab geometry
is given by equation (14) in the section 2.1. So the wave
action density can be obtained by substituting equations (14)
and (A.3) into the preceding equation

Nk = Te

2

(
1 + k2

⊥ρ2
s

)2

ω∗n

|φk|2 . (A.5)
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Note that the lowest order correction from ion acoustic
effects to the wave action density vanishes, because ion
acoustic corrections to wave energy density and the linear
wave frequency cancel each other.Then, the normalized wave
momentum density or turbulence pseudomomentum can be
written as

1
mics

∑

k

kyNk =
∑

k

(
1 + k2

⊥ρ2
s

)2

2ρs/Ln

|φk|2

= −
(

∂ ln n0

∂r

)−1 〈q̃2〉
2

. (A.6)

This is the second term on the lhs of equation (7), with opposite
sign.
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